

Fast Engine Response Approaches and Test Bed

Jonathan S. Litt NASA Glenn Research Center, Cleveland, OH 44135

Overview

- Past Work
- Fast Engine Response Approaches
- Conclusions
- Test Beds
- Acknowledgments

Problems identified with using throttles-only control (TOC)

- Past flight testing at NASA Dryden identified several problems with using only throttles for flight control
 - weak control moments
 - difficulty in damping phugoid and dutch-roll oscillations
 - coupling between pitch and roll
 - sluggish engine response that made landing extremely difficult
- Propulsion Controlled Aircraft (PCA), which is a flight control design using engines as actuators, might be a little better than pilot integration, but that is a flight control design problem. Faster engines can help there, too.

Fast Engine Response Approaches

- High speed idle
- Increase regulator bandwidth for small transients
- Control limit relaxation
- Adjustment of NDOT acceleration schedule
- Addition of stall margin control mode
- New control modes, e.g., L1 Adaptive Control
- New actuators, e.g., fan bleed valve

Objective of this effort

Goal:

 Decrease throttle to thrust response time

Requirements:

- Maintain engine conditions within minimum survivability limits (i.e. turbine temperature near but not exceeding blade melting point)
- Ensure continuous engine operation when in "fast mode" (no stall)

Throttle position
Thrust response

What improvements can be made through modification of the existing controller?

The Commercial Modular Aero-Propulsion System Simulation

LPC = Low Pressure Compressor

HPC = High Pressure Compressor

HPT = High Pressure Turbine

LPT = Low Pressure Turbine

= Fan Speed

N2 = Core Speed

C-MAPSS is available for download from the NASA Software Repository https://technology.grc.nasa.gov/software/SWInfo form.asp?cat=all¢er=all&SwareKey=97

The C-MAPSS Controller is Representative of a Real Engine Controller

Features of the Controller

- Fan speed regulator
- High limit regulators
- Low limit regulators
- All regulators are linear gain-scheduled
- Limit regulators protect the engine structurally.
- C-MAPSS has temperature, pressure, and shaft speed limits
- Min/Max selection logic protects engine by selecting the most conservative fuel flow
- Acceleration/Deceleration schedules take over during large throttle movements. They protect the engine from stall and blowout
- All control signals are incremental fuel flow commands
- Free integrator adds increment to current fuel flow
- Eliminates integrator windup
- The controller is designed to provide safe engine operation over a long life, which means that it is designed to work for the most deteriorated engine under the worst conditions

Controller Bandwidth Increase/ Control Limit Relaxation/ Acceleration Schedule Relaxation Sensitivity Study

Ref: Litt, J.S., Frederick, D.K., Guo, T.-H., "The Case for Intelligent Propulsion Control for Fast Engine Response," AIAA-2009-1876, AIAA Infotech@Aerospace Conference, Seattle, WA, April 6-9, 2009

Small Throttle Transients: Controller

High limits protect the engine structurally

Small Throttle Transients: Throttle step of 5 degrees Closed loop bandwidth increasing

Small Throttle Transients: Limits Relaxed Closed loop bandwidth increasing

Small Throttle Transients: Throttle step of 10 degrees

Large Throttle Transients: Controller

Acceleration limits protect engine from stall

Large Throttle Transients: Throttle step of 60 degrees Limits relaxed individually and in combination

Addition of stall margin control mode

- Parallel structure of limit regulators allows additional regulators to be added easily to existing control architecture
- Since stall margins are not measurable they must be estimated and these estimated values would be used as control variables

Litt, J.S., Guo, T.-H., "Fast Thrust Response for Improved Flight/Engine Control under Emergency Conditions," AIAA 2008-6503, AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, August 18-21, 2008.

Conclusions

- Since the controller is designed to accommodate the worst case engine, some ability to improve thrust response almost always exists
- The use of estimated engine health information can enable more aggressive operation
- The controller schedule and limit adaptation procedure depends upon the level of deterioration of the engine and how the limits interact during transient operation, so it is condition- and situation-dependent
- The fast response control modes described are being or will be investigated using C-MAPSS40k

Test Beds

Test Beds

- NASA GRC Piloted Control Evaluation Facility
- Generic Transport Model (GTM)
- **Boeing Flight Simulator**
- NASA F/A-18

NASA GRC Piloted Control Evaluation Facility

Computer Capabilities

- Sun Workstation runs nonlinear airframe simulation in real time.
- Three networked PCs run
 - Out the window scenery (three channels)
 - Four copies of C-MAPSS40k running in real time
- Software
 - Currently using GL Studio with Vega Prime
 - **Investigating Microsoft ESP**

Piloted Control Evaluation Facility

Acknowledgments

Fast Engine Response

Dean K. Frederick, Saratoga Control Systems, Inc.

Test bed

T. Shane Sowers, QinetiQ